3.1091 \(\int \frac{\sqrt{a+b x^2+c x^4}}{\sqrt{d x}} \, dx\)

Optimal. Leaf size=145 \[ \frac{2 \sqrt{d x} \sqrt{a+b x^2+c x^4} F_1\left (\frac{1}{4};-\frac{1}{2},-\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{d \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1}} \]

[Out]

(2*Sqrt[d*x]*Sqrt[a + b*x^2 + c*x^4]*AppellF1[1/4, -1/2, -1/2, 5/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*
x^2)/(b + Sqrt[b^2 - 4*a*c])])/(d*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2
 - 4*a*c])])

________________________________________________________________________________________

Rubi [A]  time = 0.124622, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.083, Rules used = {1141, 510} \[ \frac{2 \sqrt{d x} \sqrt{a+b x^2+c x^4} F_1\left (\frac{1}{4};-\frac{1}{2},-\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{d \sqrt{\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}+1} \sqrt{\frac{2 c x^2}{\sqrt{b^2-4 a c}+b}+1}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*x^2 + c*x^4]/Sqrt[d*x],x]

[Out]

(2*Sqrt[d*x]*Sqrt[a + b*x^2 + c*x^4]*AppellF1[1/4, -1/2, -1/2, 5/4, (-2*c*x^2)/(b - Sqrt[b^2 - 4*a*c]), (-2*c*
x^2)/(b + Sqrt[b^2 - 4*a*c])])/(d*Sqrt[1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[1 + (2*c*x^2)/(b + Sqrt[b^2
 - 4*a*c])])

Rule 1141

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Dist[(a^IntPart[p]*(a + b*x^2 +
 c*x^4)^FracPart[p])/((1 + (2*c*x^2)/(b + Rt[b^2 - 4*a*c, 2]))^FracPart[p]*(1 + (2*c*x^2)/(b - Rt[b^2 - 4*a*c,
 2]))^FracPart[p]), Int[(d*x)^m*(1 + (2*c*x^2)/(b + Sqrt[b^2 - 4*a*c]))^p*(1 + (2*c*x^2)/(b - Sqrt[b^2 - 4*a*c
]))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rubi steps

\begin{align*} \int \frac{\sqrt{a+b x^2+c x^4}}{\sqrt{d x}} \, dx &=\frac{\sqrt{a+b x^2+c x^4} \int \frac{\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}}{\sqrt{d x}} \, dx}{\sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}}\\ &=\frac{2 \sqrt{d x} \sqrt{a+b x^2+c x^4} F_1\left (\frac{1}{4};-\frac{1}{2},-\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b-\sqrt{b^2-4 a c}},-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}\right )}{d \sqrt{1+\frac{2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{1+\frac{2 c x^2}{b+\sqrt{b^2-4 a c}}}}\\ \end{align*}

Mathematica [B]  time = 0.379736, size = 342, normalized size = 2.36 \[ \frac{2 x \left (2 b x^2 \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{5}{4};\frac{1}{2},\frac{1}{2};\frac{9}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )+20 a \sqrt{\frac{-\sqrt{b^2-4 a c}+b+2 c x^2}{b-\sqrt{b^2-4 a c}}} \sqrt{\frac{\sqrt{b^2-4 a c}+b+2 c x^2}{\sqrt{b^2-4 a c}+b}} F_1\left (\frac{1}{4};\frac{1}{2},\frac{1}{2};\frac{5}{4};-\frac{2 c x^2}{b+\sqrt{b^2-4 a c}},\frac{2 c x^2}{\sqrt{b^2-4 a c}-b}\right )+5 \left (a+b x^2+c x^4\right )\right )}{25 \sqrt{d x} \sqrt{a+b x^2+c x^4}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[a + b*x^2 + c*x^4]/Sqrt[d*x],x]

[Out]

(2*x*(5*(a + b*x^2 + c*x^4) + 20*a*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4*a*c])]*Sqrt[(b + S
qrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[1/4, 1/2, 1/2, 5/4, (-2*c*x^2)/(b + Sqrt[b^2 - 4
*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])] + 2*b*x^2*Sqrt[(b - Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b - Sqrt[b^2 - 4
*a*c])]*Sqrt[(b + Sqrt[b^2 - 4*a*c] + 2*c*x^2)/(b + Sqrt[b^2 - 4*a*c])]*AppellF1[5/4, 1/2, 1/2, 9/4, (-2*c*x^2
)/(b + Sqrt[b^2 - 4*a*c]), (2*c*x^2)/(-b + Sqrt[b^2 - 4*a*c])]))/(25*Sqrt[d*x]*Sqrt[a + b*x^2 + c*x^4])

________________________________________________________________________________________

Maple [F]  time = 0.274, size = 0, normalized size = 0. \begin{align*} \int{\sqrt{c{x}^{4}+b{x}^{2}+a}{\frac{1}{\sqrt{dx}}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^4+b*x^2+a)^(1/2)/(d*x)^(1/2),x)

[Out]

int((c*x^4+b*x^2+a)^(1/2)/(d*x)^(1/2),x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2} + a}}{\sqrt{d x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/(d*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/sqrt(d*x), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{c x^{4} + b x^{2} + a} \sqrt{d x}}{d x}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/(d*x)^(1/2),x, algorithm="fricas")

[Out]

integral(sqrt(c*x^4 + b*x^2 + a)*sqrt(d*x)/(d*x), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{a + b x^{2} + c x^{4}}}{\sqrt{d x}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**4+b*x**2+a)**(1/2)/(d*x)**(1/2),x)

[Out]

Integral(sqrt(a + b*x**2 + c*x**4)/sqrt(d*x), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c x^{4} + b x^{2} + a}}{\sqrt{d x}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^4+b*x^2+a)^(1/2)/(d*x)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(c*x^4 + b*x^2 + a)/sqrt(d*x), x)